北京邮电大学机器人机构与交叉创新实验室
团队概况

北京邮电大学机器人机构与交叉创新实验室创建于20世纪80年代,以梁崇高教授、廖启征教授等为代表的老一辈在机器人机构学等方面研究颇丰,具有丰厚的科研底蕴,解决了被誉为机构学“珠穆朗玛峰”的7R机构运动学世界难题,在机器人机构学领域处于领先地位,获得过国家教委科技进步奖一等奖、国家自然科学奖四等奖。面向未来,实验室赓续传承,交叉创新,主要致力于机器人机构学、医疗康复机器人、特种作业机器人、数字化设计及智能制造、机器视觉及人工智能、虚拟现实及数字孪生等相关的基础理论研究、关键技术创新产业化转化高素质人才培养。

研究方向
研究成果
平台建设
招生招聘

1)机器人机构学

2)医疗康复机器人

3)特种作业机器人

4)数字化设计及智能制造

5)机器视觉及人工智能

(6)仿生学与机器人

1在研科研项目

[1] 国家重点研发计划课题,网络化二便能力增强与护理机器人系统集成及应用验证,2022.11-2025.10,在研

[2] 国家重点研发计划课题,多体位变换照护康复一体化支撑平台创成2023.12-2026.11,在研

[3] 国家重点研发计划课题基于动态补偿与弹性配准的手眼协同实时导航技术研究2023.12-2026.11,在研;

[4] 国家自然科学基金面上项目,第三代半导体材料SiC单晶聚焦超声激励金刚石线锯高效切割机理研究,2023.1-2026.12,在研;

[5] 国家自然科学基金青年项目,复杂机电产品中柔性线缆的弹塑性物理建模与装配仿真方法,2024.1-2026.12,在研;

[6] 国家自然科学基金青年项目,飞鱼高效水空跨介质运动机理及仿生机器人研究,2023.1-2025.12,在研;

[7] 国家重点研发计划子课题,高龄脊柱退变性疾病支具治疗关键技术及临床验证,2024.1-2026.12,在研;

[8] 国家重点研发计划子课题,照护康复一体化机器人智能协同控制方法研究,2023.12-2026.11,在研;

[9] 国家重点研发计划子课题,复杂创面缝合运动学参数优化系统,2023.11-2026.10,在研;

[10] 国家重点研发计划子课题,高龄脊柱退变分型与生物力学机制理论体系2024.1-2026.12,在研;

[11] 总装预研分承研项目复杂XX线缆敷设XX规划与XX技术研究2022.10-2025.10在研

[12] 工业和信息化部高质量专项“XX服务器2024.01-2026.01在研

[13] 北京市自然科学基金项目,儿童头颈部肿瘤手术机器人关键技术研究,2024.1-2027.12在研

2) 代表学术论文

[1] Ganmin Zhu; Shimin Wei; Ying Zhang; Qizheng Liao ; CGA-based novel modeling method for solving the forward displacement analysis of 3-RPR planar parallel mechanism, Mechanism and Machine Theory, 2022, 168: 1-

[2] Xuegang Li; Shimin Wei; Qizheng Liao; Ying Zhang ; A novel analytical method for four-bar path generation synthesis based on Fourier series, Mechanism and Machine Theory, 2020, 144: 1-24.

[3] Xuegang Li; Shimin Wei; Qizheng Liao; Ying Zhang ; A novel analytical method for function generation synthesis of planar four-bar linkages, Mechanism and Machine Theory, 2016, 101: 222-235.

[4] Haiyan Sheng; Wei Shimin; Xiuli Yu; Ling Tang ; Research on Binocular Visual System of Robotic Arm Based on Improved SURF Algorithm [J]. IEEE Sensors Journal, 2020, 20(20): 11849- 11855.

[5] Mingshuai Dong; Wei Shimin; Xiuli Yu; Jianqin Yin ; MASK-GD segmentation based robotic grasp detection [J]. Computer Communications, 2021, 178: 124-130.

[6] Jian Li, Diansheng Chen, Yingying Zhang, Yan Yao, Zhongjun Mo, Lizheng Wang, Yubo Fan. Diagonal-symmetrical and Midline-symmetrical Unit Cells with Same Porosity for Bone Implant: Mechanical Properties Evaluation. Journal of Bionic Engineering, 2019,16(3): 468–479.

[7] Zhuxun Tang, Yueting Zhou1, Lifang Ma, Jian Li, Flow performance of porous implants with different geometry: Line, surface, and volume structures. International Journal of Bioprinting,2023,9(3):1-14.

[8] Rui Cui, Jian Li, Yongkang Jiang, Hao Sun, Yinglun Tan, Lunhui Duan, Mengkun Wu, Trajectory Optimization with Musculoskeletal Integration Features for Fracture Reduction Orthopedic Robot, International Journal of Medical Robotics and Computer Assisted Surgery,2022,18(2):1-13.

[9] Peng Su, Jiang Li, Chao Yue, Tian Liu, Baoguo Liu, Jian Li, Preoperative positioning planning for a robot-assisted minimally invasive surgical system based on accuracy and safety, International Journal of Medical Robotics and Computer Assisted Surgery,2022, 18(4):1-9.

[10] Jiang Yongkang, Tong Xin, Li Jian*,Hui Li, Chongjing Cao, Xing Gao, Yingtian Li*. Reprogrammable bistable actuators for multimodal, fast, and ultra-sensitive grasping. IEEE/ASME Transactions on Mechatronics, 2023.

[11] 崔睿, 陈殿生, 苏鹏, 李剑, 孙昊. 骨折复位及畸形矫正机器人的轨迹规划研究进展[J]. 机械工程学报, 2022, 58(13): 1-21.

[12] Lutao Yan, Xinrong Zhang, Haiyuan Li, Qinjian Zhang*. Machinability improvement in three-dimensional (3D) ultrasonic vibration assisted diamond wire sawing of SiC [J]. Ceramics International, 2022, 48(6): 8051-8068.

[13] Lutao Yan, Qi Wang, Haiyuan Li, Qinjian Zhang. Surface generation mechanism of ceramic matrix composite in ultrasonic assisted wire sawing [J]. Ceramics International, 2021, 47(2):1740-1749.

[14] Lutao Yan, Wang Chen, Haiyuan Li, Qinjian Zhang*. Mechanism of ultrasonic vibration effects on adhesively bonded ceramic matrix composites joints [J]. Ceramics International, 2021,47(23):33214-33222.

[15] Lutao Yan, Qi Wang, Haiyuan Li, Qinjian Zhang*. Experimental investigation on cutting mechanisms in fixed diamond wire sawing of bone [J]. Precision Engineering, 2021,68:319-325.

[16] Lutao Yan, Qinjian Zhang, Jinhai Wang, Jingzhou Yu. Effect of ultrasonic vibration on tribological behavior of carbon-carbon composite [J]. Tribology International, 2019, 136: 469-474.

[17] Lutao Yan, Qinjian Zhang, Jingzhou Yu. Analytical models for oil penetration and experimental study on vibration assisted machining with minimum quantity lubrication [J]. International Journal of Mechanical Sciences, 2018, 148: 374-382.

[18] Lutao Yan, Xiuhong Chen, Haiyuan Li, Qinjian Zhang.Investigation on focused ultrasound-assisted diamond wire sawing of silicon carbide [J]. International Journal of Advanced Manufacturing Technology, 2023, 128:.3251–3259

[19] Lutao Yan, Qinjian Zhang, Jingzhou Yu. Effects of continuous minimum quantity lubrication with ultrasonic vibration in turning of titanium alloy [J]. International Journal of Advanced Manufacturing Technology, 2018, 98:827-837.

[20] Wu Zhang, Haiyuan Li, Linlin Cui, Haiyang Li, Xiangyan Zhang, Shanxiang Fang, Qinjian Zhang. Research progress and development trend of surgical robot and surgical instrument arm [J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2021, 7(5):e2309. 

[21] Dai Xiaofeng, Li Haiyuan. Ning Meng. Plasma robot engineering: the next generation of precision disease management [J]. Annals of biomedical engineering, 2021, 49: 1593–1597. 

[22] 李海源, 刘畅, 严鲁涛, 张斌, 李端玲, 张勤俭. 上肢外骨骼机器人的阻抗控制与关节试验研究. 机械工程学报. 2020, 56(19): 200-209.

[23] Li Haiyuan, Wang Tianmiao, Gregory Chirikjian. Simultaneous Hand-Eye and Robot-World Calibration by Solving the AX=YB Problem without Correspondence [J]. IEEE Robotics and Automation Letters, 2016, 1(1): 145-152.

[24] Li Haiyuan, Wang Tianmiao, Wei Hongxing, and Meng Cai. Response Strategy to Environmental Cues for Modular Robots with Self-Assembly from Swarm to Articulated Robots [J]. Journal of Intelligent & Robotic Systems, Springer Netherlands, 2016, 81(3-4): 359-376.

[25] Li Haiyuan, Wei Hongxing, Xiao Jiangyang, and Wang Tianmiao. Co-evolution framework of swarm self-assembly robots [J]. Neurocomputing, 2015, 148: 112-121.

[26] 张英, 冯征征, 李剑, 魏世民, 廖启征. 基于CGA 7自由度冗余机械臂逆运动学臂型角参数化方法[J], 机械工程学报, 2023, 59(23): 68-75

[27] 张英, 黄起能, 廖启征, 魏世民. 空间刚体变换的倍矩阵描述方法, 机械工程学报, 2022, 58(13): 89-100

[28] 张英, 黄起能, 廖启征, . 空间6R串联机械手逆运动学分析的新方法研究. 机械工程学报, 2022, 58(19): 1-11.

[29] Zhang Ying; Kong Xianwen; Wei Shimin; Li Duanling; Liao Qizheng ; CGA-Based approach to direct kinematics of parallel mechanisms with the 3-RS structure [J], Mechanism and Machine Theory, 2018, 124: 162-178

[30] Yu. XL, Yang. FH, Yun. J, Wu. S. CIRNN: An Ultra-Wideband Non-Line-of-Sight Signal Classifier Based on Deep-Learning [J]. Tehnicki Vjesnik-Technical Gazette, 2022, 29(4):1139-1146.

[31] Yu. XL, Dong. MS, Yin. WM. Time-optimal trajectory planning of manipulator with simultaneously searching the optimal path[J]. Computer Communications, 2022, 181:446-453.

[32] Dong. MS , Bai. YX , Wei. SM, Yu.XL. Real-world semantic grasp detection using ontology features: learning to concentrate on object features[J]. Neural Processing Letters, 2023, 55 (6):8419-8439.

[33] Bai.YX, Dong. MS, Wei.SM , Li. J, Yu.XL. YOLOOD: an arbitrary-oriented  flexible flat cable detection method in robotic assembly[J]. Journal Of Supercomputing, 2023,79 (13):14869-14893.

[34] Xiong Xiong, Wang Ying, Song Tianyuan, Huang Jinguo*, Kang Guixia. Improved motor imagery classification using adaptive spatial filters based on particle swarm optimization algorithm[J]. Frontiers in Neuroscience, 2023, 17: 1303648.

[35] Cao Gongpeng, Zhang Manli, Wang Yiping, Zhang Jing, Han Ying, Xu Xin, Huang Jinguo*, Kang Guixia*. End-to-end automatic pathology localization for Alzheimer’s disease diagnosis using structural MRI[J]. Computers in Biology and Medicine, 2023: 107110.

[36] Huang Jinguo, Wang Tianmiao, Liang Jianhong, Yang Xingbang, Wang Haodong, Kang Guixia. Biorobotic Waterfowl Flipper with Skeletal Skins in a Computational Framework: Kinematic Conformation and Hydrodynamic Analysis[J]. Advanced Intelligent Systems, 2022: 2200380.

[37] Huang Jinguo, Liang Jianhong, Yang Xingbang, Chen Hongyu, Wang Tianmiao. Cormorant webbed feet support water-surface takeoff: Quantitative analysis via CFD[J], Journal of Bionic Engineering, 2021.

[38] Huang Jinguo, Sun Yilun, Wang Tianmiao, Tim C. Lueth, Liang Jianhong, Yang Xingbang. Fluid-Structure Interaction Hydrodynamics Analysis on a Deformed Bionic Flipper With Non-Uniformly Distributed Stiffness[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4657-4662./Presented at the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

[39] Naijing Lv, Jianhua Liu*, Xiaoyu Ding, Jiashun Liu, Haili Lin, and Jiangtao Ma. Physically based real-time interactive assembly simulation of cable harness[J]. Journal of Manufacturing Systems, 2017, 43:385-399.

[40] Naijing Lv, Jianhua Liu, Xiaoyu Ding*, and Haili Lin. Assembly simulation of multi-branch cables[J]. Journal of Manufacturing Systems, 2017, 45:201-211.

[41] Naijing Lv, Jianhua Liu, and Yunyi Jia*. Dynamic modeling and control of deformable linear objects for single-arm and dual-arm robot manipulations[J]. IEEE Transactions on Robotics, 2022, 38(4):2341-2353.

[42] Naijing Lv, Jianhua Liu*, Huanxiong Xia, Jiangtao Ma, and Xiaodong Yang. A review of techniques for modeling flexible cables[J]. Computer-Aided Design, 2020, 122:102826.

[43] 吕乃静, 刘检华*. 柔性线缆的机器人自动敷设关键技术与发展趋势[J]. 机械工程学报, 2022, 58(17): 75-95.

2)典型科研产品

1 AODF自动光纤配线机器人


图2功率超声赋能装配设备
图3智能气动骨折复位机器人
  
图4半失能老年人洗浴机器人
图5基于竹编工艺仿生的3D打印脊柱侧弯矫形器
图6 3D打印多孔减压鞋垫(糖尿病足和扁平足患者适用)
图7 模块化群体自组装机器人
图8 可自动对接组织的蛇形机器人
图9 可重构灵巧手
图10 自重构机器人及非合作目标操控

1-1111.png

图11 基于混合现实的主从操作腔镜手术机器人


图12 基于机器视觉定位的全规格计量用互感器自动化接线系统

图13 触觉感知末端执行器

1117.png

1211.png

图14 互感器文本检测与识别软件(手机端和电脑端)

132.png 

143.png

图15 基于国产芯片的智能网关

 152.png

161.png

图16 NZY测试软件

1-192.png 

图17 多轴力传感器配套软件

 1-20.png

图18 柔性线缆的布局设计与装配仿真软件

 1-211.png

图19 基于DELMIA的分支线缆装配仿真软件

北京邮电大学自动化学院机电工程中心建有空间机器人技术教育部工程研究中心机械工程一级学科博士学位授权点北京市机械工程重点学科智能养老康复交叉学科等。团队拥有六自由度协作臂、高精度3D打印机、NDI运动捕捉系统、面向虚拟制造和遥操作的头盔、五指灵巧手等软硬件设备,具备良好的科研实验条件。

欢迎青年人才加入团队,欢迎保送、报考、申请团队的博士研究生、硕士研究生,欢迎从事博士后工作研究以上专业包括但不限于:机械、自动化、控制、测控、计算机、电子与信息等。

欢迎来函咨询与交流

E-mail: jianli@bupt.edu.cn